Non - adiabatic tidal forcing of a massive , uniformly rotating star II : The low frequency , inertial regime

نویسندگان

  • G. J. Savonije
  • J. C. Papaloizou
چکیده

We study the fully non-adiabatic tidal response of a uniformly rotating unevolved 20M ⊙ star to the dominant l = m = 2 component of the companion's perturbing potential. This is done numerically with a 2D implicit finite difference scheme. We assume the star is rotating slowly with angular speed Ω s ≪ Ω c , so that the centrifugal force can be neglected, but the Coriolis force is taken fully into account. We study the low frequency 'inertial' regime |σ| < 2Ω s , where σ is the forcing frequency in the frame rotating with the stellar spin rate Ω s. In this frequency range inertial modes are excited in the convective core which can interact with rotationally modified g-or r-modes in the radiative envelope and cause significant strengthening of the tidal interaction. Resonant interaction with quasi-toroidal (r-)modes in slightly super-synchronous stars causes efficient spin down towards corotation. We determine timescales for tidal spin-up and spin-down in the inertial frequency regime for stars spinning with Ω s = 0.1Ω c and 0.2 Ω c .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-adiabatic tidal forcing of a massive, uniformly rotating star III: Asymptotic treatment for low frequencies in the inertial regime

We describe a generalization of the asymptotic calculation of the tidal torques experienced by a massive star as a result of a companion in circular orbit originally considered by Zahn (1975,1977) to the case of a rotating star when the forcing frequency is small and in the inertial regime, that is it is less than twice the rotation frequency in magnitude. The results confirm the presence of a ...

متن کامل

Tidal interaction of a rotating 1 M ⊙ star with a binary companion

We calculate the tidal interaction of a uniformly rotating 1 M⊙ star with an orbiting companion at various phases of core hydrogen burning from the ZAMS to core hydrogen exhaustion. By using the traditional approximation we reduce the solution of the non-adiabatic oscillation equations for the tidal forcing of a rotating star to a one dimensional problem by solving a separate eigenvalue problem...

متن کامل

Tidal evolution of eccentric orbits in massive binary systems

We study the tidal evolution of a binary system consisting of a 1.4M⊙ compact object in elliptic orbit about a 10M⊙ uniformly rotating main sequence (MS) star for various values of the initial orbital parameters. We apply our previously published results of 2D non-adiabatic calculations of the non-radial gand r-mode oscillations of the uniformly rotating MS star, and include the effects of reso...

متن کامل

Tidal evolution of eccentric orbits in massive binary systems A study of resonance locking

We study the tidal evolution of a binary system consisting of a 1.4M compact object in elliptic orbit about a 10M uniformly rotating main sequence (MS) star for various values of the initial orbital parameters. We apply our previously published results of 2D non-adiabatic calculations of the nonradial gand r-mode oscillations of the uniformly rotating MS star, and include the effects of resonan...

متن کامل

The dynamical tide in a rotating 10 M ⊙ main sequence star a study of g - and r - mode resonances

We study the linear, but fully non-adiabatic tidal response of a uniformly rotating, somewhat evolved (X c = 0.4), 10 M ⊙ main sequence star to the dominant l = 2 components of its binary companion's tidal potential. This is done numerically with a 2D implicit finite difference scheme. We assume the spin vector of the 10 M ⊙ star to be aligned perpendicular to the orbital plane and calculate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997